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1. INTRODUCTION

The dynamics of cracked structures has been a topic of active research during the last
decade. When a structural component is subjected to a crack, the crack induces a local
flexibility which is a function of the crack depth, thereby changing its dynamic behavior
and its stability characteristics [1]. Some researches have proposed techniques to estimate
the effects on the eigenparameters on these structures (direct methods), while others have
dealt with the problem of detecting, locating and quantifying the extent of damage (inverse
problem).

The dynamic behavior of the cracked structures was studied by several analytical and
numerical methods [2–9]. Dimarogonas presents a state of review on the dynamics of the
cracked structures [10]. Many works in this fields deal with the cracked beam, subject to
various boundary conditions. A complete cracked beam vibration theory is also developed
by Chondros and Dimarogonas [11] for the lateral vibration of cracked Euler–Bernoulli
beam with single-edge or double-edge open cracks. In reference [11], the crack region as a
local flexibility was expressed by a crack disturbance function f ðx; zÞ which could be
derived from the stress intensity factors in the theory of fracture mechanics. In most of the
previous studies, the model of Euler–Bernoulli beam theory by deriving the differential
equation and the associated boundary conditions for a uniform Euler–Bernoulli beam
containing one or two cracks are often used and discussed.

Some of the researches evaluate the change in eigensolutions due to the presence of
cracks on beam by finite element methods. In some other articles, the beam was subdivided
into several beams, separated from one another by a crack, which was represented through
a massless rotational spring [2–4, 6, 9]. In both of the previous methods, finally, it is
possible to evaluate natural frequencies simply by finding roots of the high order

determinant of the coefficient matrix of the linear system. In finite element methods, the
order of the determinant is increased as the degree of freedom (nodes) is increased.
Usually, this method leads to high order determinant if the accuracy of the eigensolutions
is required. On the other hand, the general solution for the eigenfunctions of every beam
contains four unknown constants and this leads to a system of (4n þ 4) equations in case
of n cracks [7, 8]. Usually, it is not easy to construct the linear system using the method
proposed in references [7, 8] for a general case of n cracks. This is the main reason for most
of the cases that only one or two cracks were considered in detail, without attempting to
provide a solution for a more general situation except in reference [2].

This investigation presents a hybrid analytical/numerical method that permits the
efficient computation of the eigensolutions for an arbitrary number of cracks of a beam
0022-460X/02/$35.00 # 2002 Elsevier Science Ltd. All rights reserved.
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with various boundary conditions. The method is based on the use of massless rotational
spring to present the cracks, and by the patching conditions of each crack, the
relationships of the four integration constants of the eigenfunctions between adjacent sub-
beams can be determined [12]. By using the transfer matrix, as a consequence, the whole
system has only four unknown constants which can be solved through the satisfaction of
four boundary conditions. An analytical form of eigenvalue problem is introduced which
is solved using closed form, transfer matrix methods in this article.

2. THEORETICAL MODEL

An Euler Bernoulli beam of length L and with k open cracks is considered as in
Figure 1. It is assumed that the cracks are located at points X1;X2; :::;Xk such that
05X15X25 � � �5Xk5L: The vibration amplitudes of the transverse displacements of the
beam are denoted by YjðX ;TÞ on the interval Xj�15X5Xj; where the sub-index j

represents the jth segment and j ¼ 1; 2; . . . ; k þ 1 (refer to Figure 1). The entire beam
(whole domain) is now divided into ðk þ 1Þ segments (sub-domains) with lengths
l1; l2; . . . ; lkþ1; respectively, which are separated by k cracks. According to the literature in
references [2, 3, 11], the equation of motion for each segment, assume with uniform cross-
section, is

EI
@4YiðX ;TÞ

@X 4
þ rA

@2YiðX ;TÞ
@T2

¼ 0; Xi�15X5Xi; i ¼ 1; 2; . . . ; k þ 1; ð1Þ

where E is Young’s modulus of the material, I is the moment of inertia of the beam cross-
section, r is the density of material and A is the cross-section area of the beam.

The boundary conditions of the beam for the simply supported case are:

Yð0;TÞ ¼ YðL;TÞ ¼ 0; Y 00ð0;TÞ ¼ Y 00ðL;TÞ ¼ 0: ð2a; bÞ

The ‘‘patching conditions’’ enforce continuities of the displacement field, bending
moment and shear force, respectively, across each crack and can be expressed as

YiðX�
i ;TÞ ¼ Yiþ1ðXþ

i ;TÞ; Y 00
i ðX�

i ;TÞ ¼ Y 00
iþ1ðXþ

i ;TÞ; ð2c; dÞ

Y 000
i ðX�

i ;TÞ ¼ Y 000
iþ1ðXþ

i ;TÞ; i ¼ 1; 2; . . . ; k: ð2eÞ

Moreover, a discontinuity into the slope of the beam across each crack exists and can be
expressed [3] as

Y 0
iþ1ðXþ

i ;TÞ � Y 0
i ðX�

i ;TÞ ¼ yiLY 00
iþ1ðXþ

i ;TÞ; i ¼ 1; 2; . . . ; k; ð2fÞ
Figure 1. A beam with k cracks located at positions X1;X2; . . . ;XK ; respectively, and the sub-domains are
l1; l2; . . . ; lk; lkþ1 where l1 þ l2 þ � � � þ lk þ lkþ1 ¼ L:



Figure 2. (a) Sketch figure of a double-side crack and (b) sketch figure of a single-side crack.
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where yi is the non-dimensional ith crack section flexibility which are functions of the
crack extent [4, 7]. For double-side open cracks [7], refer to Figure 2(a) as

yi ¼ 6p%gg2i fDð%ggiÞ
H

L

� �
; ð3aÞ

where %ggi ¼ ai=H; ai is the depth of the ith crack and

fDð%ggiÞ ¼ 0�5335 � 0�929%ggi þ 3�500%gg2i � 3�181%gg3i þ 5�793%ggi
4: ð3bÞ

For single-side open cracks, refer to Figure 2(b) [7]

yi ¼ 6p%gg2i fJð%ggiÞ
H

L

� �
; ð3cÞ

fJð%ggiÞ ¼ 0�6384 � 1�035%ggi þ 3�7201%gg2i � 5�1773%gg3i þ 7�553%gg4i � 7�332%gg5i þ 2�4909%ggi
6: ð3dÞ

For the cases of closing cracks, the model is the same except the expressions for different
functions of fD;Jð%ggiÞ [1].
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In the above, the following quantities are introduced:

y ¼ Y

L
; x ¼ X

L
; t ¼ Tffiffiffiffi

L
p : ð4Þ

Thus, in each segment, equation (1) can then be expressed in the non-dimensional form as

EI

L3

@4yiðx; tÞ
@x4

þ rA
@2yiðx; tÞ

@t2
¼ 0; xi�15x5xi; i ¼ 1; 2; :::; k þ 1: ð5Þ

The non-dimensional ‘‘patching conditions’’ from equations (2c) to (2f ) are:

yiðx�
i ; tÞ ¼ yiþ1ðxþ

i ; tÞ; y00
i ðx�

i ; tÞ ¼ y00
iþ1ðxþ

i ; tÞ; ð6a; bÞ

y000
i ðx�

i ; tÞ ¼ y000
iþ1ðxþ

i ; tÞ; y0
iþ1ðxþ

i ; tÞ � y0
iðx�

i ; tÞ ¼ yiy
00
iþ1ðxþ

i ; tÞ; ð6c; dÞ

where i ¼ 1; 2; . . . ; k and yi is in equations (3a) and (3c) for double and single-sided open
cracks respectively.

3. CALCULATION OF EIGENSOLUTIONS

The eigensolutions for the cases of commonly used different boundary conditions are
derived. The solutions of the other boundary conditions can also be obtained easily
through the similar procedure. Using the separable solutions: yðx; tÞ ¼ wðxÞejot in
equation (5) leads to the associated eigenvalue problem

w0000
i ðxÞ � l4wiðxÞ ¼ 0; xi�15x5xi; i ¼ 1; 2; . . . ; k þ 1; ð7Þ

where

l4 ¼ rAo2L3

EI
: ð7aÞ

From equations (6a)–(6d), the corresponding patching conditions across each crack lead
to

wiðx�
i Þ ¼ wiþ1ðxþ

i Þ; w00
i ðx�

i Þ ¼ w00
iþ1ðxþ

i Þ; ð8a; bÞ

w000
i ðx�

i Þ ¼ w000
iþ1ðxþ

i Þ; w0
iþ1ðxþ

i Þ � w0
iðx�

i Þ ¼ yiw
00
iþ1ðxþ

i Þ ð8c; dÞ

for i ¼ 1; 2; . . . ; k: A closed form solution to this eigenvalue problem can be obtained by
employing transfer matrix methods [12–14]. The general solution of equation (7), for each
segment, is

wiðxÞ ¼Ai sin lðx � xi�1Þ þ Bi cos lðx � xi�1Þ þ Ci sinh lðx � xi�1Þ
þ Di cosh lðx � xi�1Þ; xi�15x5xi; i ¼ 1; 2; . . . ; k þ 1; ð9Þ

where Ai; Bi; Ci and Di are constants associated with the ith segment (i ¼ 1; 2; . . . ; k þ 1).
These constants in the (i+1)th segment (Aiþ1; Biþ1; Ciþ1 and Diþ1) are related to those in
the ith segment (Ai; Bi; Ci and Di) through the patching conditions in equation (8a)–(8d)
and can be expressed as

Aiþ1

Biþ1

Ciþ1

Diþ1

8>>><
>>>:

9>>>=
>>>;

¼

t11t12t13t14

..

.

� � � t44

2
664

3
775
ðiÞ Ai

Bi

Ci

Di

8>>><
>>>:

9>>>=
>>>;

¼
%
T ðiÞ

4	4

Ai

Bi

Ci

Di

8>>><
>>>:

9>>>=
>>>;
; i ¼ 1; 2; . . . ; k; ð10Þ



LETTERS TO THE EDITOR 991
where
%
T

ðiÞ
4	4 is the 4 	 4 transfer matrix which depends on the eigenvalue l and the elements

is derived in Appendix A and are rewritten here as follows:

t11 ¼ cos lli � 1
2
yil sin lli; t12 ¼ �sin lli � 1

2
yil cos lli; ð10a; bÞ

t13 ¼ 1
2
yil sinh lli; t14 ¼ 1

2
yil cosh lli; ð10c; dÞ

t21 ¼ sin lli; t22 ¼ cos lli; t23 ¼ 0; ð10e2gÞ

t24 ¼ 0; t31 ¼ �1
2
yil sin lli; t32 ¼ �1

2
yil cos lli ð10h2jÞ

t33 ¼ cosh lli þ 1
2
yil sinh lli; t34 ¼ sinh lli þ 1

2
yil cosh lli; ð10k; lÞ

t41 ¼ 0; t42 ¼ 0; t43 ¼ sinh lli; ð10m2oÞ

t44 ¼ cosh lli: ð10pÞ
Through repeated application of equation (10), the four constants in the first segment

(A1; B1; C1 and D1) can be mapped into those of the last segment, reducing the number of
independent constants to four.

Akþ1

Bkþ1

Ckþ1

Dkþ1

8>>><
>>>:

9>>>=
>>>;

¼
%
T

ðkÞ
4	4

Ak

Bk

Ck

Dk

8>>><
>>>:

9>>>=
>>>;

¼
%
T

ðkÞ
4	4

%
T

ðk�1Þ
4	4

Ak�1

Bk�1

Ck�1

Dk�1

8>>><
>>>:

9>>>=
>>>;

¼
%
T

ðkÞ
4	4

%
T

ðk�1Þ
4	4 � � �

%
T

ð1Þ
4	4

A1

B1

C1

D1

8>>><
>>>:

9>>>=
>>>;
: ð11Þ

These four remaining constants (A1; B1; C1 and D1) can be found through the satisfaction
of the boundary conditions.

For the case of a simply supported beam, the corresponding boundary conditions of
equations (2a) and (2b) can thus be expressed as follows:

Y ð0;TÞ ¼ 0 ! wð0Þ ¼ 0; ð12aÞ

YðL;TÞ ¼ 0 ! wð1Þ ¼ 0; ð12bÞ

Y 00ð0;TÞ ¼ 0 ! w00ð0Þ ¼ 0; ð12cÞ

Y 00ðL;TÞ ¼ 0 ! w00ð1Þ ¼ 0: ð12dÞ
Beginning with those at the left support, equations (9), (12a) and (12c), leads to

B1 ¼ 0 and D1 ¼ 0: ð13Þ
Satisfaction of the boundary conditions of equation (9) at the right supports, equations
(12b) and (12d) requires

Akþ1 sin llkþ1 þ Bkþ1 cos llkþ1 þ Ckþ1 sinh llkþ1 þ Dkþ1 cosh llkþ1 ¼ 0; ð14aÞ

�Akþ1 sin llkþ1 � Bkþ1 cos llkþ1 þ Ckþ1 sinh llkþ1 þ Dkþ1 cosh llkþ1 ¼ 0; ð14bÞ
which can be expressed in matrix form as

0

0

( )
¼

sin llkþ1 cos llkþ1 sinh llkþ1 cosh llkþ1

�sin llkþ1 �cos llkþ1 sinh llkþ1 cosh llkþ1

" # Akþ1

Bkþ1

Ckþ1

Dkþ1

8>>><
>>>:

9>>>=
>>>;

¼
%
B2	4

Akþ1

Bkþ1

Ckþ1

Dkþ1

8>>><
>>>:

9>>>=
>>>;
;

ð15Þ
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where

%
B2	4 ¼

sin llkþ1 cos llkþ1 sinh llkþ1 cosh llkþ1

�sin llkþ1 �cos llkþ1 sinh llkþ1 cosh llkþ1

" #
: ð15aÞ

Substitution of equation (11) into equation (15) and using equation (13)
leads to

0

0

( )
¼

%
B2	4

Akþ1

Bkþ1

Ckþ1

Dkþ1

8>>><
>>>:

9>>>=
>>>;

¼
%
B2	4

%
T

ðkÞ
4	4

%
T

ðk�1Þ
4	4 � � �

%
T

ð1Þ
4	4

A1

B1

C1

D1

8>>><
>>>:

9>>>=
>>>;

¼
%
R2	4

A1

B1

C1

D1

8>>><
>>>:

9>>>=
>>>;

¼
r11 r12 r13 r14

r21 r22 r23 r24

" # A1

0

C1

0

8>>><
>>>:

9>>>=
>>>;
; ð16Þ

where

%
R2	4 ¼

%
B2	4

%
T

ðkÞ
4	4

%
T

ðk�1Þ
4	4 � � �

%
T

ð1Þ
4	4 ¼

r11 r12 r13 r14

r21 r22 r23 r24

" #
:

Thus, the existence of non-trivial solutions requires:

det
r11ðlÞ r13ðlÞ
r21ðlÞ r23ðlÞ

" #
¼ 0: ð17Þ

This determinant provides the single (characteristic) equation for the solution of the
eigenvalue ln: This equation is solved using the standard Newton–Raphson iterations or,
for simplification, as shown in Figure 3 to obtain the eigenvalues. The coefficients of the
eigenfunctions, wnðxÞ; are obtained by back substitution into equations (16), (10) and then
equation (9).

For the cases of other usually used boundary conditions, through the similar procedure,
the following relations can be obtained:

(1) Cantilever beam: The existence of non-trivial solutions for the constants A1; B1; C1

and D1 requires

det
r11 � r13 r12 � r14

r21 � r23 r22 � r24

" #
¼ 0: ð18Þ

The matrix
%
B2	4 in equation (15) now becomes

%
B2	4 ¼

�cos llkþ1 sin llkþ1 cosh llkþ1 sinh llkþ1

�sin llkþ1 �cos llkþ1 sinh llkþ1 cosh llkþ1

" #
: ð19Þ

(2) Fixed–fixed beam: The existence of non-trivial solutions is the same as equation (18)
but the matrix

%
B2	4 in equation (15) now becomes

%
B2	4 ¼

sin llkþ1 cos llkþ1 sinh llkþ1 cosh llkþ1

cos llkþ1 �sin llkþ1 cosh llkþ1 sinh llkþ1

" #
: ð20Þ
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Figure 3. Simple calculation of eigenvalues.
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(3) Free–free beam: The existence of non-trivial solutions now requires

det
r11 þ r13 r12 þ r14

r21 þ r23 r22 þ r24

" #
¼ 0 ð21Þ

and the matrix
%
B2	4 in equation (15) now is the same as equation (19).

4. NUMERICAL RESULTS AND DISCUSSION

The proposed methods are used to solve the beam vibration problems with multiple
open cracks (single-sided or double-sided). In order to validate the method in this article,
numerical results are compared with the available data. First is the case of the cantilever
beam with only one single-sided open crack as in reference [8], the beam
L ðlengthÞ ¼ 300mm, b ðwidthÞ ¼ 20mm, h ðheightÞ ¼ 20mm, Young’s modulus
E ¼ 2�06 	 1011 N/m2, the density r ¼ 7800 kg/m3, the crack is located 140mm from the
fixed end and the crack depth is a1 ¼ 10mm. From reference [8], the lowest three natural
frequencies of this system are measured experimentally as 171, 987 and 3034Hz [8]. The
numerical calculation results by the proposed solution procedure in this article are shown
in Table 1. From Table 1, it is observed that the numerical results proposed in this article
are satisfactory compared to the experimental data.

By using the proposed method in this article, the eigensolutions of the beam with
multiple cracks can be obtained easily. Figures 4–6 present the cases of a cantilever beam
with equally spaced cracks (each crack is assumed to have the same depth). Figure 4 shows
the curves of the ratio of the first eigenvalue (natural frequency) to uncracked case by
increasing the number of cracks N for different crack depths. The same curves of the
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Figure 4. The ratio of the first eigenvalue to the uncracked case for a cantilever beam with equally spaced
cracks (each has the same crack depth) as the number of cracks N varies.

Table 1

Comparisons for a cantilever beam with one open single-sided crack [8]

Frequency (Hz) First eigenvalue
O1

Second eigenvalue
O2

Third eigenvalue
O3

Calculated from this article 173�88Hz 988�45Hz 3211Hz
Experimental results from reference [8] 171Hz 987Hz 3034Hz
Error 1�6% 0�15% 5�8%
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second and third eigenvalues are shown in Figures 5 and 6. From these figures, it is
observed that three sets of curves in Figures 4–6 are almost coincided when the number
of cracks N is large. Note that there are obvious differences for those curves of the
small crack number (N55). That means the variations on eigenvalues are more sensitive
when only a few cracks exist. As the number of the cracks N increases, the
dynamic behavior becomes more and more insensitive. For another case of a cantilever
beam with 49 equally spaced single-sided open cracks which have the same depths, the
variations of the lowest three eigenvalues are shown in Figure 7 as the crack depths are
changed.

When the eigenvalues are obtained, the corresponding eigenvectors (mode shapes) can
also be calculated from equation (9). Figure 8 shows a cantilever beam with five single-
sided open cracks. The crack locations and depths are: x1 ¼ 0�1; a1 ¼ 0�5; x2 ¼ 0�15; a2 ¼
0�3; x3 ¼ 0�2; a3 ¼ 0�3; x4 ¼ 0�5; a4 ¼ 0:5 and x5 ¼ 0�6; a5 ¼ 0�3: By using the method
proposed in this article, the lowest three eigenvalues and eigenvectors are shown in
Figure 9.
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Figure 8. A Cantilever Beam with five cracks: x1 ¼ 0�1; a1 ¼ 0�5; x2 ¼ 0�15; a2 ¼ 0�3; x3 ¼ 0�2; a3 ¼ 0�3; x4 ¼
0�5; a4 ¼ 0�5 and x5 ¼ 0�6; a5 ¼ 0�3:
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5. CONCLUSIONS

A hybrid analytical/numerical solution method is developed that permits the efficient
evaluation of eigensolutions for a vibration beam with an arbitrary finite number of
transverse open cracks. The method utilizes a numerical implementation of a transfer
matrix solution to an analytical form of the equation of motion. Unlike all the other
methods, in which the dimension of the matrix will increase with the number of cracks,
there are only four undetermined coefficients in the method proposed in this article. The
dimension of the matrix is independent of the number of cracks in this method. The main
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feature of this method is to decrease the dimension of the matrix involved in the finite
element method and some other analytical methods.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the support of the National Science Council of
Taiwan R.O.C. under grant number NSC 89-2745-P-212-003.

REFERENCES

1. N. Anifantis and A. D. Dimarogonas 1984 Computers and Structures 18, 351–356. Post
buckling behavior of transverse cracked columns.

2. E. I. Shifrin and R. Ruotolo 1999 Journal of Sound and Vibration 222, 409–423. Natural
frequencies of a beam with an arbitrary number of cracks.

3. Y. Narkis 1994 Journal of Sound and Vibration 172, 549–558. Identification of crack location in
vibrating simply supported beams.

4. B. S. Haisty and W. T. Springer 1988 Journal of Vibration, Acoustics, Stress, and Reliability in
Design 110, 389–394. A general beam element for use in damage assessment of complex
structures.

5. T. G. Chondros and A. D. Dimarogonas 1980 Journal of Sound and Vibration 69, 531–538.
Identification of cracks in welded joints of complex structures.

6. M. H. Shen and C. Pierre 1990 Journal of Sound and Vibration 138, 115–134. Natural modes of
Bernoulli–Euler beams with symmetric cracks.

7. W. M. Ostachowitz and M. Krawczuk 1991 Journal of Sound and Vibration 150, 191–201.
Analysis of the effect of cracks on the natural frequencies of a cantilever beam.

8. P. F. Rizos and N. Aspragathos 1990 Journal of Sound and Vibration 138, 381–388.
Identification of crack location and magnitude in a in cantilever beam from the vibrating modes.

9. M. Boltezar, B. Strancar and A. Kuhelj 1998 Journal of Sound and Vibration 211, 729–734.
Identification of transverse crack location in flexural vibrations of free–free beams.

10. A. D. Dimarogonas 1996 Engineering Fracture Mechanics 55, 831–857. Vibration of cracked
structures: a state of the art review.

11. T. G. Chondros, A. D. Dimarogonas and J. Yao 1998 Journal of Sound and Vibration 215,
17–34. A continuous cracked beam vibration theory.

12. H. P. Lin and N. C. Perkins 1995 Journal of Sound and Vibration 179, 131–149. Free vibration
of complex cable/mass system: theory and experiment.

13. W. C. Hurty and M. F. Rubinstein 1964 Dynamics of Structures. Englewood Cliffs, NJ:
Prentice-Hall, Inc.

14. H.P. Lin and C. K. Chen 2001 The 25th National Conference on Theoretical and Applied
Mechanics, 3123–3132. Analysis of cracked beams by transfer matrix method, Taichung,
Taiwan.

APPENDIX A: TRANSFER MATRIX DERIVATION

The patching conditions across the ith crack (i ¼ 1; 2; . . . ; k) are represented in
equations (8a)–(8d). From equations (8a) and (8b), the following can be obtained as

Biþ1 þ Diþ1 ¼ Ai sin lli þ Bi cos lli þ Ci sinh lli þ Di cosh lli; i ¼ 1; 2; . . . ; k; ðA1Þ

�Biþ1 þ Diþ1 ¼ �Ai sin lli � Bi cos lli þ Ci sinh lli þ Di cosh lli; i ¼ 1; 2; . . . ; k: ðA2Þ
Similarly, equations (8c) and (8d) lead to

�Aiþ1 þ Ciþ1 ¼ �Ai cos lli � Bi sin lli þ Ci cosh lli þ Di sinh lli; i ¼ 1; 2; . . . ; k; ðA3Þ
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Aiþ1 þ yi lBiþ1 þ Ciþ1 � yi lDiþ1 ¼Ai cos lli � Bi sin lli

þ Ci cosh lli þ Di sinh lli; i ¼ 1; 2; . . . ; k: ðA4Þ
Solving for equations (A1)–(A4) leads to the following recursion formulae for the
constants Aiþ1; Biþ1; Ciþ1 and Diþ1:

Aiþ1

Biþ1

Ciþ1

Diþ1

8>>><
>>>:

9>>>=
>>>;

¼

t11t12t13t14

..

.

� � � t44

2
664

3
775
ðiÞ Ai

Bi

Ci

Di

8>>><
>>>:

9>>>=
>>>;

¼
%
T

ðk�1Þ
4	4

Ai

Bi

Ci

Di

8>>><
>>>:

9>>>=
>>>;
; i ¼ 1; 2; . . . ; k:

Here,
%
T

ðiÞ
4	4

4	4
is a transfer matrix composed of the elements

t11 ¼ cos lli � ð1
2
Þyil sin lli; t12 ¼ �sin lli � ð1

2
Þyil cos lli;

t13 ¼ ð1
2
Þyil sin lli; t14 ¼ ð1

2
Þyil cosh lli;

t21 ¼ sin lli; t22 ¼ cos lli; t23 ¼ 0; t24 ¼ 0;

t31 ¼ �ð1
2
Þyil sin lli; t32 ¼ �ð1

2
Þyil cos lli;

t33 ¼ cosh lli þ ð1
2
Þyil sinh lli; t34 ¼ sinh lli þ ð1

2
Þyil cosh lli;

t41 ¼ 0; t42 ¼ 0; t43 ¼ sinh lli; t44 ¼ cosh lli:
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